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Abstract. A physical model of the swimming appendage

(second antenna) of a larval Anemia was oscillated and

translated through a tank of glycerine to determine how
such a shape may be used to generate thrust at the inter-

mediate Reynolds numbers at which it operates. Force

on the model was measured by strain gauges and used to

calculate coefficients of drag at a series of speeds and fre-

quencies that represented flow regimes of different larval

stages. Measured coefficients of drag (C d ) over this Reyn-
olds number range (~1-10) suggest that an expression

for a cylinder perpendicular to flow at intermediate

Reynolds number (C d =1 + 10 Re~2/3
) best represents

the changes in drag coefficients for this geometry.

Unsteady forces were found to be a negligible portion

of the force on the model in spite of a high ratio of fre-

quency of oscillation to forward translational velocity (i.e.,

Strouhal number).

Comparison of the thrust generated by the model with

its fan of setae rigidly fixed versus passively flexing suggests

that passive extension of setae can be influenced by relative

limb and body speed.

Introduction

Animals th. ini span an enormous range of sizes.

This range is so ^i
< the hydrodynamics that governs

propulsion of the vv,> slow swimmers and the large,

fast swimmers are quiu < iierent. Small swimmers con-

tend only with the viscosity of the fluid around them:

flows are reversible, and shape does not greatly affect the

pattern of flow. By contrast, large, fast swimmers use the

inertial properties of fluids for propulsion: bodies are
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streamlined to reduce pressure drag, and propulsion is

often achieved by accelerations of the surrounding fluid.

Weunderstand the principles that determine these ex-

treme cases because theoretical fluid dynamics provides

solutions to the Navier-Stokes equations for these ex-

tremes: at the low end, inertial effects of the fluid are ne-

glected; at the high end, viscous effects are neglected. But

many organisms exist between these two extremes, and

the flows they experience are a result of both fluid viscosity

and fluid inertia. Planktonic animals are a good example
of a whole category of organisms that inhabit this fluid

regime. They include not only adults but also the larval

stages of many animals.

Larvae are particularly interesting because, unlike

their adult counterparts, they undergo changes in size

and shape. This means that early in its life cycle an

animal can be moving in a fluid regime dominated by

viscosity and then, as it grows and develops, can ex-

perience flows that result from an increase in the im-

portance of inertial effects. The brine shrimp, Artemia,

provides such an example. Larvae swim actively from

hatching until maturity. They are about 0.5 mmlong

when they hatch and swim at an average speed of 2 mm/s
using only one pair of limbs. These limbs, the antennae,

dominate propulsion during the first half of larval life

and are gradually succeeded by a series of limbs that

develop sequentially on the trunk. During part of the

larval development of Artemia, the antennae increase

in length from 0.25 mmto 0.50 mm, and the frequency

of limb beat drops from 9.5 Hz to 8.0 Hz. Reynolds
numbers of the limb based on limb length range from

1 to 9, and Strouhal numbers based on average body

velocity drop from 8 to 3 (Table I). The antennae are

used in a paddling mode of propulsion throughout this

period of growth and change of form.
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Table 1

Parameters used to model limb heal in selected lan-al stages, and forces measured on model limb
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Re =
(3)

where p
= fluid density, f = some characteristic linear

dimension of the object, in this case the length of the

limb. Ua
=

average speed, and ^ =
viscosity of the fluid.

For objects of the same geometry, equality of Reynolds
number implies equality of the pattern of flow and equality

of drag coefficients. My physical model can preserve these

two features of an Anemia antenna, assuming that it rep-

resents the important features of antennal geometry.

However, the limbs oscillate. The Strouhal number (
=

reduced frequency parameter) is another dimensionless

index that characterizes the flow. Conservation of this pa-

rameter implies conservation of the relative importance
of fluid acceleration to steady flows. Strouhal number (St)

is denned as

St =
(4)

where co is the angular frequency of the limb. ( is the

length of the limb, and Ub is the average velocity of the

body.

I chose speeds and frequencies to drive the large-scale

physical model of Anemia antenna that would approxi-

mate the combination of Re and St of the beating antenna

at four selected larval stages. These are based on high-

speed cine-photography and therefore do not account for

stage-specific variation in larvae (see companion paper
for discussion; Williams. 1994).

Measurement oj force coefficients

Simple translation of the physical model (see below)

yielded only a very limited range of speeds for direct mea-

surements of drag coefficients. To evaluate the drag coef-

ficients over a broader, more biologically relevant range,

I calculated an average drag coefficient for the different

trial runs (in which the model both translated and oscil-

lated, see Fluid forces and dynamic modeling, above). The

higher velocities resulting from the combined speed of

translation and speed of oscillation yielded a broader range
of Reynolds numbers. I compare the coefficient of drag
calculated this way to two. different expressions for the

coefficient of drag (C d ) of a cylinder perpendicular to flow:

either

Cd
= 24/Re (5)

which expresses the low Reynolds number linear depen-
dence offeree on speed (Batchelor, 1967), or

Cd
=

(6)

which allows for the growth of pressure drag at interme-

diate Reynolds number situations, 1 < Re < 1 X 10
5

(White, 1974).

I also evaluated which expression for Cd better predicts

the actual thrust produced by the model by comparing

thrust predicted on the basis of either expression with

measured thrust. I used the expression for standard de-

viation (Sokal and Rohlf, 1981), a, as a measure of fit

between the measured and predicted curves:

cr= [l/n2(t c -t m)

2
] (7)

where n is the number of points, t c is the calculated thrust,

and t m is the measured thrust. See Williams (1994) for

the details of calculating thrust.

The physical model and driving apparatus

A physical model of a limb that could be propelled

within a tank of glycerin mimicked certain features of the

active Anemia antennae. For the geometry of the model

limb (i.e.. limb shape and setal spacing), I used direct

tracings from film sequences of free-swimming animals

(Williams, 1994). The model was constructed with casting

resin. Thin brass cylinders formed a fixed fan that flexibly

attached to the distal edge of the model (Fig. 1). This

allowed the fan to flex during the recovery stroke; a raised

lip in the cast itself anchored the fan in an extended po-

sition during the power stroke. Alternatively, the fan could

be anchored in place so that it remained extended in both

power and recovery strokes. This allowed comparison be-

tween a symmetrical and a passively asymmetrical stroke.

7 cm

Figure 1. Cast resin model of Anemia larval antenna. Setal fan built

of fine brass and tungsten wire.
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Figure 4. Comparison of thrust generated by the model (dotted lines) with thrust calculated on the basis

of the same frequency and speed using eqn. 6 (solid lines). Each graph represents a single stroke of the model,

although the force is averaged over all strokes during the 100 runs (and total stroke number depends on the

frequency and speed). Arrows mark onset of recovery stroke. A-D correspond to the four successive larval

stages the model mimics (see Table 1).

Figure 6 compares the symmetrical stroke of the model

(where the fan of thin brass rods is unable to tlex during

the recovery stroke) with the asymmetrical stroke of the

same frequency and speed (where the fan is free to flex

during the recovery stroke and then opens passively during

the course of the power stroke). Simulations with higher

Strouhal numbers show similar patterns of thrust during

the stroke. However, as the Strouhal numbers drop, the

maximum thrust generated during the stroke is shifted

later in the cycle, reflecting the later extension of the fan.

This occurs because the model must overcome a relatively

greater translational speed before it generates thrust. The

result is a decrease in the relative thrust per cycle produced

by the limb (as reflected by the difference between the

areas under the two curves during the power stroke).

Discussion

Artcmia larvae grow through a range of sizes and speeds

that entail changes in the forces that determine their mo-

tions in the fluid. A physical model of the early larval

propulsors, the antennae, shows that under the hydro-

dynamic regime experienced by the animals, these limbs

generate force roughly as a cylinder at intermediate

Reynolds numbers flows (eqn. 6). This empirically derived

result is in agreement with a theoretical model of pro-

pulsion by copepod thoracic limbs which uses this equa-

tion to model copepod swimming by sequential move-

ment of five pairs of appendages (Morris et ai. 1985).

In spite of the high frequency of the limb beat, unsteady

forces are a negligible part of thrust production. Although

unsteady forces are not always calculated as a source of
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Figure 5. Comparison of thrust generated by the model (dotted lines) with thrust calculated only on the

basis of the angular position of the model (solid lines). Each graph represents a single stroke of the model,

although the force is averaged over all strokes during the 100 runs (and total stroke number depends on the

frequency and speed). Arrows mark onset of recovery stroke. A-D correspond to the four successive larval

stages the model mimics (see Table I). In C and D there is an offset due to greater translational speeds.

thrust on oscillator.' propulsors (e.g., Nachtigall, 1974),

Blake (1985) has shown that they may produce as much
as one-third of the thrust on the limbs of water boatmen,

Cenocorixa hifida. The Reynolds number of these animals

is about two orders of magnitude higher than those ex-

perienced by Anemia larvae modeled here (600 vs. 1-9),

so it is not surprising that unsteady forces are correspond-

ingly greater.

Although the model does not capture all of the details

of the animal's limb kinematics, it does provide some

generalizations about oscillating propulsion. In an over-

view of swimming in crustaceans. Hessler ( 1985) hypoth-

esizes that setal structures on diverse swimming limbs may
extend passively. Such passive extension is the case for

the feeding setae of a filter-feeding shrimp (Fryer, 1977).

This passive behavior may be possible only in some hy-

drodynamic regimes. At the intermediate Reynolds num-

bers modeled here, comparison of the thrust generated by
the model at low and high Strouhal numbers suggests that

an animal could use passively extending setae only if the

speed of limb oscillation is high relative to the forward

speed of the body otherwise a passively extending system

provides little thrust for propulsion. However, real setae

are not accurately modeled by a metal wire fan. Typically,

setal diameter varies from base to tip. and setal mor-

phology is asymmetrical in the direction of power and

recovery strokes. My results suggest that the influence of

both setal material and morphology on passive behavior

would be worth investigating, as these could influence the

time-course of thrust production in real animals.

The kinematics of the model and the kinematics of an

Anemia antenna differ in a significant way. Artemia an-
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Figure 6. Thrust generated by the model when the stroke is symmetrical (dotted lines) compared with

thrust generated when the stroke is asymmetrical (solid lines). Graphs represent a single stroke of the model,

although the force is averaged over many strokes. Arrows mark onset of recovery stroke. A-D correspond

to the four successive larval stages the model mimics (see Table I). Note that in later stages (C. D), the thrust

generated during the power stroke is much smaller with an asymmetrical stroke than a symmetrical one.

tennae are linked to a freely moving body whose trajectory

through the water changes as the animal develops: early

stages swim in a highly pulsatile fashion; later stages do

not (Williams, 1994). Therefore, unlike the model, the

oscillation of the appendage is not simply coupled to a

constant velocity, and the distribution of velocity along
the length of the limb changes accordingly as the animal

develops (Williams, 1994). Thus, the model does not pro-

vide direct information about the actual time-course of

thrust production by an Anemia antenna during the stroke

cycle. However, the force coefficient determined for the

model does provide an empirical basis for determining

drag produced by the antennal geometry moving in a fluid

regime where both inertial and viscous effects determine

flows. I use this empirically based force coefficient in a

purely theoretical model in which I link thrust produced

by a pair of appendages to resistive forces on the body
and examine the mode of swimming that results (Wil-

liams. 1994).
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